Install Obliq AI SRE Agent
Obliq is an AI-Powered infrastructure management platform designed to bring intelligence, automation, and reliability to operations across Kubernetes and AWS environments.
Install Obliq AI SRE Agent using Helm charts.
Before you begin installation, ensure that these prerequisites are met.
Install the Agent
This section describes the step-by-step procedure for installing the Obliq AI SRE Agent.
Add the Helm Repository
-
Add the Obliq Charts Helm repository using the following command:
helm repo add obliq-charts https://repo.obliq.avesha.io/
helm repo updateinfo- You can explore the
values.yamlHelm chart in Explore the Helm Chart. - To learn about parameters of
values.yaml, see Helm Chart Parameters.
- You can explore the
Create a Registry Secret
Use the following commands to create a registry secret:
# Get credentials from support@aveshasystems.com
kubectl create namespace avesha --dry-run=client -o yaml | kubectl apply -f -
kubectl create secret docker-registry registry \
--docker-username=YOUR_USERNAME_FROM_AVESHA \
--docker-password=YOUR_PASSWORD_FROM_AVESHA \
--docker-email=your-email@company.com \
--docker-server=https://avesha.azurecr.io/ \
-n avesha
For advanced configuration, see Secret Management.
Choose an Installation Option
To manage environment variables, see .env file setup.
We have provided the following three installation options for you to choose:
If you need to create a custom kubeconfig file, you can download it from your Kubernetes cluster or cloud provider.
Minimal or Core Services Only
Use this installation option for a demonstration or development.
For more information, see Kubernetes Permissions.
# Set your OpenAI API key (get from https://platform.openai.com/api-keys)
export OPENAI_API_KEY="sk-your-openai-api-key"
# Install with LoadBalancer for external UI access
helm install obliq-sre-agent obliq-charts/obliq-sre-agent \
--namespace avesha \
--create-namespace \
--set-file global.kubeconfig.content=./kubeconfig `# Path to your kubeconfig file` \
--set global.env.openai.OPENAI_API_KEY="${OPENAI_API_KEY}" `# Required for AI services` \
--set avesha-unified-ui.service.type=LoadBalancer `# Expose UI externally` \
--timeout 15m
AWS Integration
Use this installation option for AWS environments. Before running AWS integration, ensure you have:
- AWS IAM Policies: required IAM roles and policies.
- AWS prerequisites: AWS account configuration and permissions
- Valid AWS credentials: IAM user with required permissions
# Core credentials
export OPENAI_API_KEY="sk-your-openai-api-key" # Get from OpenAI platform
export AWS_ACCESS_KEY_ID="your-aws-access-key" # AWS IAM user access key
export AWS_SECRET_ACCESS_KEY="your-aws-secret-key" # AWS IAM user secret
export AWS_ROLE_ARN_AWS_MCP="arn:aws:iam::123456789012:role/your-aws-mcp-role" # IAM role for AWS MCP
export AWS_REGION="us-west-2" # AWS region for resources
# Install with AWS integration and LoadBalancer UI access
helm install obliq-sre-agent obliq-charts/obliq-sre-agent \
--namespace avesha \
--create-namespace \
--set-file global.kubeconfig.content=./kubeconfig `# Path to your kubeconfig` \
--set global.env.openai.OPENAI_API_KEY="${OPENAI_API_KEY}" `# Required for AI services` \
--set aws-mcp.enabled=true `# Enable AWS MCP service` \
--set global.env.aws.AWS_ACCESS_KEY_ID="${AWS_ACCESS_KEY_ID}" `# AWS API access` \
--set global.env.aws.AWS_SECRET_ACCESS_KEY="${AWS_SECRET_ACCESS_KEY}" `# AWS API secret` \
--set global.env.aws.AWS_ROLE_ARN_AWS_MCP="${AWS_ROLE_ARN_AWS_MCP}" `# AWS MCP role ARN` \
--set global.env.aws.AWS_REGION="${AWS_REGION}" `# AWS region` \
--set avesha-unified-ui.service.type=LoadBalancer `# Expose UI externally` \
--timeout 15m
Full Integration
Use this installation option for production environments. This option installs all services.
Full integration requires additional setup:
- Kubernetes Permissions: Required RBAC and cluster permissions
- Service Dependencies: Understanding service relationships and dependencies
- Secret Management: Advanced credential and secret handling
For full integration with all services, see the full integration deployment example.
Verify Installation
-
Check if pods are running using the following command:
kubectl get pods -n aveshaAll pods should be
RUNNING. -
Check the deployment status using the following command:
# Check deployment status
helm status obliq-sre-agent -n avesha -
Verify if core services are ready using the following command:
kubectl get deployments -n avesha -
Check for issues (if any) using the following command:
kubectl get events -n avesha --sort-by='.lastTimestamp' | tail -10
Method to Access the Agent Console
LoadBalancer is the recommended method to access the Agent Console for production environments.
Get the LoadBalancer external IP address using the following command:
# Get the external IP (may take a few minutes to provision)
kubectl get service -n avesha avesha-unified-ui
# Access at: http://<EXTERNAL-IP>:80
After getting the IP address, visit Access the Obliq AI SRE Agent Console. The default login credentials to access the console are:
- Username: admin@aveshasystems.com
- Password: admin123
Alternative Access Methods
| Method | Details |
|---|---|
| NodePort | Add --set avesha-unified-ui.service.type=NodePort instead of LoadBalancer |
| Port Forward (ClusterIP) | kubectl port-forward -n avesha service/avesha-unified-ui 8080:80 |
Uninstall the Obliq AI SRE Agent
-
Uninstall the Obliq AI SRE Agent using the following command:
# Uninstall the application
helm uninstall obliq-sre-agent -n avesha -
[Optional] Remove the namespace using the following command:
# Remove the namespace (optional)
kubectl delete namespace avesha -
Remove the
cert-managernamespace if you have created it using the following command:kubectl delete namespace cert-manager
Troubleshooting
Refer to Obliq AI SRE Agent Installation Issues.